Antizyme overexpression in transgenic mice reduces cell proliferation, increases apoptosis, and reduces N-nitrosomethylbenzylamine-induced forestomach carcinogenesis.
نویسندگان
چکیده
Antizyme (AZ) is known to be a regulator of polyamine metabolism that inhibits ornithine decarboxylase activity and polyamine transport, thus restricting polyamine levels. Transgenic mice with AZ expression targeted to the basal cell layer of the forestomach epithelium by the keratin 5 promoter were used to investigate whether AZ overexpression inhibited uncontrolled cell proliferation in zinc-deficient (ZD) mice and reduced their susceptibility to forestomach carcinogenesis by N-nitrosomethylbenzylamine (NMBA). Four-week-old keratin 5/AZ and wild-type (Wt) littermates were placed on ZD or zinc-sufficient (ZS) diets to form four groups: ZD:AZ, ZD:Wt, ZS:AZ, and ZS:Wt. After 5 weeks, 27-45 mice in each group were treated twice with NMBA and sacrificed 14 weeks later. Independent of zinc intake, AZ mice had significantly lower forestomach tumor incidence and tumor multiplicity than respective Wt littermates (P < 0.001): 21% of ZD:AZ versus 76% of ZD:Wt mice and 3% of ZS:AZ versus 33% of ZS:Wt mice developed tumors. Spermidine content was reduced in NMBA-treated ZD:AZ forestomachs. Zinc deficiency increased the forestomach cell proliferation in Wt mice, but this effect was blocked by AZ. Conversely, apoptosis was substantially higher in control and NMBA-treated ZD:AZ than respective ZD:Wt forestomachs. The restored ZD:AZ forestomach epithelium displayed strong expression of Bax, a proapoptotic protein, and weak staining of cyclin D1 and its catalytic partner Cdk4, key regulatory proteins controlling G(1) to S progression. In contrast, proliferative ZD:Wt forestomach showed strong expression of Bcl-2, an antiapoptotic protein, and overexpression of cyclin D1/Cdk4. Treatment of ZD:Wt mice with alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase, had similar results to AZ in reducing tumor incidence, spermidine content, decreasing cell proliferation, and increasing apoptosis. These results demonstrate that AZ may act as a tumor suppressor gene stimulating apoptosis and restraining cell proliferation, thereby inhibiting forestomach tumor development. Although effects of AZ on functions other than polyamine metabolism are possible, alterations in polyamines are the most likely explanation for the reduction in tumors, supporting the use of strategies to modulate polyamine levels for cancer chemoprevention in individuals at high risk of developing malignancies of the gastrointestinal tract.
منابع مشابه
Antizyme Overexpression in Transgenic Mice Reduces Cell
Antizyme (AZ) is known to be a regulator of polyamine metabolism that inhibits ornithine decarboxylase activity and polyamine transport, thus restricting polyamine levels. Transgenic mice with AZ expression targeted to the basal cell layer of the forestomach epithelium by the keratin 5 promoter were used to investigate whether AZ overexpression inhibited uncontrolled cell proliferation in zinc-...
متن کاملCombined cyclin D1 overexpression and zinc deficiency disrupts cell cycle and accelerates mouse forestomach carcinogenesis.
Overexpression of cyclin D1 and disruption of cell cycle control in G(1) occur frequently in human esophageal cancer. Transgenic (TG) mice with cyclin D1 overexpression targeted to the oral-esophageal tissue by the EBV ED-L2 promoter showed increased severity in esophageal dysplasia without cancer development, after multiple doses of N-nitrosomethylbenzylamine (NMBA). Dietary zinc deficiency (Z...
متن کاملp53 deficiency accelerates induction and progression of esophageal and forestomach tumors in zinc-deficient mice.
The p53 tumor suppressor protein plays a pivotal role in preventing uncontrolled cellular proliferation. By contrast, zinc deprivation enhances esophageal cell proliferation and the induction of esophageal tumors in rodents by N-nitrosomethylbenzylamine (NMBA). We investigated whether p53 deficiency rendered zinc-deficient (ZD) mice more susceptible to NMBA-induced esophageal/forestomach carcin...
متن کاملTransgenic mouse models for studies of the role of polyamines in normal, hypertrophic and neoplastic growth.
Transgenic mice expressing proteins altering polyamine levels in a tissue-specific manner have considerable promise for evaluation of the roles of polyamines in normal, hypertrophic and neoplastic growth. This short review summarizes the available transgenic models. Mice with large increases in ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase or antizyme, a protein regulating p...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 63 14 شماره
صفحات -
تاریخ انتشار 2003